Climate Change Adaptation for Coastal Infrastructure – Assessing and Managing Risks
Making Effective Use of Uncertain Information

Randall Freed
November 13, 2009

Small Sea Changes: Big Infrastructure Impacts
Houston
Outline

- Challenges and barriers to adaptation in coastal infrastructure
- Framework to streamline adaptation
- Efforts underway on adaptation and infrastructure
- Summary
Challenges and Barriers

- Diverse decision makers with diverse capacity and information needs
- Perception of uncertainty is a hurdle
- Screening, assessing, and managing climate risks is complicated and resource-intensive
 - Developing planning-relevant climate change scenarios is a significant hurdle
 - Emphasis on long time-frames requires projecting not only climate, but also other long-term drivers difficult to foresee
 - Few damage functions or guidelines are available
 - Engineered structures often specify design standards in terms of intensity-duration-frequency targets (e.g., 100-year flood), and climate “stationarity is dead” (Milly et al. 2008)
 - Many climate risks have “low probability/ high consequence” characteristics
 - Little info is available on cost-effectiveness of adaptation options
 - Little info is available on costs of inaction
- The benefits of adaptation are largely unproven
Challenges and Barriers

- In a world of limited resources, adaptation looks scary, time-consuming, and of questionable value

How can we streamline adaptation in coastal infrastructure design, planning, asset management, and operation/maintenance?
Prioritize where to focus efforts to adapt to climate change in the near term.
Risk Screening: Where Does Climate Have a Role?

- How sensitive is the asset/system to climate change?
 - Is climate a factor now?
 - Will changes in average climate—or in the “tails”—be a factor?
- What is at stake if a wrong decision is made?
 - Impacts/damages of climate potentially high?
 - Damages irreversible or difficult to reverse?
 - Is the asset/system critical?
 - Is capital investment large?
 - Can negative effects of climate be ameliorated by possible adaptive action?
- Timing and time horizon: is there a need to take immediate action?
 - Is there an immediate threat based on current conditions?
 - Are decisions being made now that will govern actions for sometime to come, or do decisions take time to be implemented?
Risk Screen: Output

- **Group 1**: climate change is not a key stressor

- **Group 2**: climate change could become important, but options remain open to adapt in the future – monitor and revisit periodically

- **Group 3**: assess risks and start managing them now
 - Climate change risks are significant relative to other stressors
 - Planning and implementation life-cycles are long, or plans are difficult to adjust once in place
 - Resource value or project costs are high
 - Institutional resources are available to manage risk

Even without detailed climate projections, asset/system managers can use the screen to determine whether detailed climate change risk assessment and management (e.g., engineering analysis) is warranted
Examples of Potential Candidates for Adaptation Planning in the Short-term

- **High-cost, long-lived infrastructure programs**
 - Energy generation and transmission infrastructure
 - Transportation system design
 - Wastewater treatment and drinking water treatment design and siting
 - Flood control programs

- **Long-term programs with high cost of failure/ difficult to reverse decision**
 - Land use planning/ zoning
 - Transportation plans

- **High-value programs with high cost of failure**
 - Emergency management and communication plans
 - Insurance programs
Framework for Streamlining Adaptation

1 - Risk Screening
Prioritize where to focus efforts to adapt to climate change in the near term

2 - Risk Assessment
Assess the impacts of stressors to inform management decisions

3 - Risk Management
Risk Assessment Tools

- Climate effect scenarios (e.g., DOT climate effects typology)
 - Sea level rise (inundation, storm surge)
 - Temp (mean and extremes)
 - Precip (mean and extremes)
 - Flows (mean and extremes)

- Damage functions (translating effects to impacts)
 - Endpoints
 - Functional form
 - Effect/damage relationship – probability and consequence
 - Use existing frameworks to extent possible (e.g., NIPP)
Framework for Streamlining Adaptation

1 - Risk Screening
Prioritize where to focus efforts to adapt to climate change in the near term

2 - Risk Assessment
Assess the impacts of stressors to inform management decisions

3 - Risk Management
Take action to reduce impacts or exploit beneficial opportunities
Risk Management Tools

- Lists of options
 - By type of damage
 - Conditions for suitability

Florida Community Water Systems: Vulnerability and Value Rating
Risk Management Tools

- Cost models
 - First order cost estimates

- Effectiveness models
 - How much do the options reduce climate risk?
 - To what extent are there co-benefits?
 - What is the cost of inaction?

- Methods to characterize uncertainty
 - Key sources
 - Comparison to “familiar” sources of uncertainty
Current Efforts on Adaptation and Infrastructure

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Improving Risk Assessment Methods</th>
<th>Risk Management Assistance to Decision Makers</th>
<th>Communication/Outreach</th>
<th>Resources for Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private sector efforts</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal action plans</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State action plans/initiatives</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Federal Sectoral Programs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Climate-ready Estuaries (Fed)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Climate-ready Utilities (Fed)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>American Clean Energy & Security Act</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>American Recovery & Reinvestment Act</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Summary

- Climate change adaptation is relevant to some – but not all – coastal infrastructure planning and design
 - A risk screening process can help identify high priorities for detailed risk assessment and management
- For infrastructure, detailed assessment and management of climate-related risks is complex and involves considerable uncertainty …
 - … which makes it just like analyzing risks from many other, more familiar stressors
 - … which benefit from the availability of frameworks and info and familiarity with them
- Efforts are underway to provide frameworks and info
- If a climate bill is enacted, state and local governments could have significant resources to address adaptation which would provide an impetus for improving climate risk assessment and management
- As the US embarks on the biggest wave of investment in 70 years, we need to ensure that 21st century infrastructure is not designed for 20th century climate
Contact Info

Randy Freed
Senior Vice President
ICF International
rfreed@icfi.com
703-934-3495