Evaluating the Risk: Can IOOS aid the Insurance Industry?

Dail Rowe
November 15, 2012
Agenda

- What is reinsurance?

- What’s the role of science in risk assessment?

- Why is geophysical data important to us?
 - Science
 - Climate
 - Hazard
 - Monitoring
 - Forecasting
 - Event response
 - An informed public
Insurance and The Value of Diversification

- Let’s say you’re an insurance company that insures 100 homes in New Jersey…
- … and that the probability of any single home being destroyed is 0.01 or once every 100 years
- On average, you would pay to rebuild one home each year

 \[(0.01 \text{ per year}) \times (100 \text{ homes}) = 1 \text{ home per year}\]
Insurance and The Value of Diversification

- But any given year will be different…
 Assuming that each home being destroyed is an independent event

<table>
<thead>
<tr>
<th>Number of Homes Destroyed</th>
<th>Annual Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
</tr>
<tr>
<td>6</td>
<td>0.0005</td>
</tr>
<tr>
<td>9</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

- So… your insurance company needs cash on hand to pay claims

\[N \times (\text{home value}) = \text{cash required} \]

where \(N \) is relatively small
But what if?

NASA: Sandy on October 29, 2012
Catastrophes Create Correlated Risk

- But instead of uncorrelated risks, you now have correlated risk where a large percentage of your insured properties are damaged or destroyed at the same time

 … You’re out of business, and the people who depended on you have lost everything

- But you were smart!
 - You purchased reinsurance – insurance for insurance companies
Reinsurance is Catastrophe Insurance
Catastrophe Statistics are Inadequate

5.25 million car accidents per year
- National Highway Traffic Administration

370,000 home fires per year
- National Fire Protection Agency

1.8 hurricane landfalls per year
- National Hurricane Center
Data and Science Enable an Informed View of Risk
Model Ingredients

- Frequency and severity (probability distributions describing hurricanes)
 - How often do hurricanes make landfall?
 - Where?
 - How strong?

- Physical hazard model
 - What is the spatial pattern of the wind?
 - How high is the storm surge?
 - How much rain falls?

- Vulnerability model
 - How much damage is caused by the physical hazard?
Model Ingredients

- Frequency and severity (probability distributions describing hurricanes)
 - How often do hurricanes make landfall?
 - Where?
 - How strong?

- Physical hazard model
 - What is the spatial pattern of the wind?
 - How high is the storm surge?
 - How much rain falls?

- Vulnerability model
 - How much damage is caused by the physical hazard?
Climate Science and Hurricane Models

- Frequency and severity probability distributions are not stationary
 - Climate variability and climate change alter the probability distributions that describe hurricanes
 - More or fewer landfalling storms?
 - Changes in regional risk?
 - Should we expect more Sandy-like storms in the northeast?
 - Weaker or stronger?
 - Not just hurricanes…
 - Tornados
 - Floods
 - Severe winter storms
 -
Climate Variability: ENSO

- ENSO: El Nino / La Nina – Southern Oscillation
- Correlated with substantive changes in hurricane frequency
- Better data = better understanding
- Better nowcast = better forecast?

<table>
<thead>
<tr>
<th></th>
<th>Atlantic Basin</th>
<th>U.S. Landfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tropical Storms & Hurricanes</td>
<td>All Hurricanes</td>
</tr>
<tr>
<td>1950-2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Niño</td>
<td>8.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Neutral</td>
<td>11.5</td>
<td>6.9</td>
</tr>
<tr>
<td>La Niña</td>
<td>12.1</td>
<td>6.6</td>
</tr>
</tbody>
</table>

*Average number of storms per year
Climate Variability: AMO

- AMO: Atlantic Multi-decadal Oscillation (AMO)

9-year running mean SST and Cat 3+ hurricane records
Climate Variability or Climate Change?

- What’s the real partition between natural and anthropogenic forcing of Atlantic SST?
- Are recent increases in hurricane activity part of a cycle or the new normal?
- Is anthropogenic climate change a now problem or a future problem for the insurance industry?

Ting et al. (2009) – J Clim
Data Stewardship

- Stewardship
 - Merriam-Webster:

 the conducting, supervising, or managing of something; especially: the careful and responsible management of something entrusted to one's care

- A significant portion of the uncertainty around hurricanes and climate change and variability is due to past inadequate data stewardship
 - and it is even worse for other perils – e.g., tornados

- It is crucial that we as a community embrace consistent and quality data stewardship as a core value
Model Ingredients

- Frequency and severity (probability distributions describing hurricanes)
 - How often do hurricanes make landfall?
 - Where?
 - How strong?

- Physical hazard model
 - What is the spatial pattern of the wind?
 - How high is the storm surge?
 - How much rain falls?

- Vulnerability model
 - How much damage is caused by the physical hazard?
and the Flood They Caused
Hazard Science and Hurricane Models

- There are a variety of wind and surge models in use
 - Some relatively simple
 - Algebraic descriptions of hurricane winds
 - SLOSH models of storm surge
 - Some quite complex
 - GFDL and WRF derived simulations of hurricane wind
 - ADCIRC based simulations of storm surge
 - All can improve
 - Improvement often motivated by comparison to data
 - Unfortunately, there isn’t much data
 - Significant uncertainty in key areas - e.g.
 - Development of boundary layer after landfall
 - Basic digital elevation and bathymetric data

- No government supported anemometer captured the peak winds of hurricane Ike

- All of the key wind observations were:
 - Purpose built instruments hardened against hurricane winds
 - Supported by
 - Academia (TTU and UFL)
 - Weatherflow
Event Response Data Needs

- Available in real-time
- Direct measures of the physical hazard
 - Wind speed
 - Water levels
 - Inundated?
- Known instrument qualities
 - Location, height, units, averaging time
Forecasting

- We need skillful, probabilistic weather-forecasts at all lead times
 - Decades to days
 - Longer lead-time information impacts strategy
 - Shorter lead-times assist with event management and response

- Improvements
 - Better models
 - Better initial conditions
 - Hurricane forecasts
 - It’s a life safety and an economic issue
 - $1 million dollars per mile of evacuated coastline according to NOAA
 - Medium and long-range weather and climate
An Informed Public

RenaissanceRe

RISK SCIENCES FOUNDATION INC.

SAFE HOMES FOR ALL
LEADERSHIP FORUM
A Hurricane Risk Mitigation Leadership Forum Event

Proprietary and Confidential Information
Can IOOS aid the Insurance Industry?

Yes!

Thanks!

Questions?